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7

This book is designed to serve as a text for a course on data structures and algo-
rithms. This course is typically referred to as the CS2 course because it is often 
taken as the second course in a computing curriculum.

Pedagogically, this book follows the style and approach of the leading CS1 
book Java Software Solutions: Foundations of Program Design, by John Lewis 
and William Loftus. Our book uses many of the highly regarded features of that 
book, such as the Key Concept boxes and complete code examples. Together, 
these two books support a solid and consistent approach to either a two-course or 
three-course introductory sequence for computing students. That said, this book 
does not assume that students have used Java Software Solutions in a previous 
course.

Material that might be presented in either course (such as recursion or sort-
ing) is presented in this book as well. We also include strong reference material 
providing an overview of object-oriented concepts and how they are realized in 
Java.

We understand the crucial role that the data structures and algorithms course 
plays in a curriculum and we think this book serves the needs of that course 
well.

New in the Fourth Edition
We have made some key modifications in this fourth edition to enhance its peda-
gogy. They can be summarized as follows:

n	 Revised the collection chapters to provide a more complete explanation of 
how the Java API supports the collection.

n	 Added a summary of terms and definitions at the end of each chapter.

n	 Separated the coverage of Iterators into it’s own chapter and expanded the 
discussion.

n	 Added a new Code Annotation feature, used to explore key statements 
with graphic annotations.

n	 Added a new Common Error callout feature.

n	 Added new Design Focus callouts.

Preface

A01_LEWI3322_FM_p1-26.indd   7 21/02/13   3:45 PM



8 PrEFacE

n	 Added a new appendices covering graphical drawing, graphical user inter-
face development, and regular expressions.

n	 Reviewed and updated the text throughout to improve discussions and ad-
dress issues.

In particular, we’ve reworked the discussion of individual collections to match 
the following flow:

Explore the collection conceptually.

Discuss the support in the
Java API for the collection.

Explore implementation options
and efficiency issues.

Use the collection to solve problems.

This approach clarifies the distinction between the way the Java API supports a 
particular collection and the way it might be implemented from scratch. It makes 
it easier for instructors to point out limitations of the API implementations in a 
compare-and-contrast fashion. This approach also allows an instructor, on a case-
by-case basis, to simply introduce a collection without exploring implementation 
details if desired.

The other modifications for this edition flesh out the presentation to a higher 
degree than previous editions did. The addition of a term list (with succinct defi-
nitions) at the end of each chapter provides a summary of core issues in ways 
that the other features don’t. New Code Annotation and Common Error features 
highlight specific issues that might otherwise get lost in the body of the text, but 
without interrupting the flow of the topic.

We think these modifications build upon the strong pedagogy established by 
previous editions and give instructors more opportunity and flexibility to cover 
topics as they choose.

Our approach
Books of this type vary greatly in their overall approach. Our approach is founded 
on a few important principles that we fervently embraced. First, we present the 
various collections explored in the book in a consistent manner. Second, we 
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 PrEFacE  9

emphasize the importance of sound software design techniques. Third, we orga-
nized the book to support and reinforce the big picture: the study of data struc-
tures and algorithms.

Throughout the book, we keep sound software engineering practices a high 
priority. Our design of collection implementations and the programs that use them 
follow consistent and appropriate standards.

Of primary importance is the separation of a collection’s interface from its 
underlying implementation. The services that a collection provides are always 
formally defined in a Java interface. The interface name is used as the type des-
ignation of the collection whenever appropriate to reinforce the collection as an 
abstraction.

chapter Breakdown
Chapter 1 (Introduction) discusses various aspects of software quality and 

provides an overview of software development issues. It is designed to establish 
the appropriate mindset before embarking on the details of data structure and 
algorithm design.

Chapter 2 (Analysis of Algorithms) lays the foundation for determining the 
efficiency of an algorithm and explains the important criteria that allow a devel-
oper to compare one algorithm to another in proper ways. Our emphasis in this 
chapter is understanding the important concepts more than getting mired in heavy 
math or formality.

Chapter 3 (Introduction to Collections—Stacks) establishes the concept of a 
collection, stressing the need to separate the interface from the implementation. 
It also conceptually introduces a stack, then explores an array-based implementa-
tion of a stack.

Chapter 4 (Linked Structures—Stacks) discusses the use of references to create 
linked data structures. It explores the basic issues regarding the management of 
linked lists, and then defines an alternative implementation of a stack (introduced 
in Chapter 3) using an underlying linked data structure.

Chapter 5 (Queues) explores the concept and implementation of a first-in, first-
out queue. Radix sort is discussed as an example of using queues effectively. The 
implementation options covered include an underlying linked list as well as both 
fixed and circular arrays.

Chapter 6 (Lists) covers three types of lists: ordered, unordered, and indexed. 
These three types of lists are compared and contrasted, with discussion of the 
operations that they share and those that are unique to each type. Inheritance 
is used appropriately in the design of the various types of lists, which are imple-
mented using both array-based and linked representations.
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10 PrEFacE

Chapter 7 (Iterators) is a new chapter that isolates the concepts and implemen-
tation of iterators, which are so important to collections. The expanded discussion 
drives home the need to separate the iterator functionality from the details of any 
particular collection.

Chapter 8 (Recursion) is a general introduction to the concept of recursion and 
how recursive solutions can be elegant. It explores the implementation details of 
recursion and discusses the basic idea of analyzing recursive algorithms.

Chapter 9 (Searching and Sorting) discusses the linear and binary search algo-
rithms, as well as the algorithms for several sorts: selection sort, insertion sort, 
bubble sort, quick sort, and merge sort. Programming issues related to searching 
and sorting, such as using the Comparable interface as the basis of comparing 
objects, are stressed in this chapter. Searching and sorting that are based in par-
ticular data structures (such as heap sort) are covered in the appropriate chapter 
later in the book.

Chapter 10 (Trees) provides an overview of trees, establishing key terminology 
and concepts. It discusses various implementation approaches and uses a binary 
tree to represent and evaluate an arithmetic expression.

Chapter 11 (Binary Search Trees) builds off of the basic concepts established 
in Chapter 10 to define a classic binary search tree. A linked implementation of a 
binary search tree is examined, followed by a discussion of how the balance in the 
tree nodes is key to its performance. That leads to exploring AVL and red/black 
implementations of binary search trees.

Chapter 12 (Heaps and Priority Queues) explores the concept, use, and imple-
mentations of heaps and specifically their relationship to priority queues. A heap 
sort is used as an example of its usefulness as well. Both linked and array-based 
implementations are explored.

Chapter 13 (Sets and Maps) explores these two types of collections and their 
importance to the Java Collections API.

Chapter 14 (Multi-way Search Trees)is a natural extension of the discussion of 
the previous chapters. The concepts of 2-3 trees, 2-4 trees, and general B-trees are 
examined and implementation options are discussed.

Chapter 15 (Graphs) explores the concept of undirected and directed graphs 
and establishes important terminology. It examines several common graph algo-
rithms and discusses implementation options, including adjacency matrices.

Appendix A (UML) provides an introduction to the Unified Modeling 
Language as a reference. UML is the de facto standard notation for representing 
object-oriented systems.

Appendix B (Object-Oriented Concepts) is a reference for anyone needing a 
review of fundamental object-oriented concepts and how they are accomplished 
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in Java. Included are the concepts of abstraction, classes, encapsulation, inheri-
tance, and polymorphism, as well as many related Java language constructs such 
as interfaces.

Appendix C (Graphics) covers the basics of drawing shapes using the Java API.

Appendix D (Graphical User Interfaces) provides a detailed overview of the 
elements needed to develop a Swing-based GUI. It includes many examples using 
a variety of interface components.

Appendix E (Hashing) covers the concept of hashing and related issues, such 
as hash functions and collisions. Various Java Collections API options for hashing 
are discussed.

Appendix F (Regular Expressions) provides an introduction to the use of regu-
lar expressions, which come into play in various Java API elements, such as the 
Scanner class.

Supplements
The following student resources are available for this book:

n	 Source code for all programs presented in the book

n	 VideoNotes that explore select topics from the book

Resources can be accessed at www.pearsoninternationaleditions.com/lewis

The following instructor resources can be found at Pearson Education’s 
Instructor Resource Center:

n	 Solutions for select exercises and programming projects in the book

n	 Powerpoint slides for the presentation of the book content

n	 Test bank 

To obtain access, please visit www.pearsoninternationaleditions.com/lewis  
or contact your local Pearson Education sales representative.

Pearson would also like to thank Mohit P. Tahiliani of NITK Surathkal for 
reviewing the content of the International Edition.
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