
This is a special edition of an established 
title widely used by colleges and universities 
throughout the world. Pearson published this 
exclusive edition for the benefi t of students 
outside the United States and Canada. If you 
purchased this book within the United States 
or Canada you should be aware that it has 
been imported without the approval of the 
Publisher or Author.

Pearson International Edition

Java Softw
are Structures

 Lew
is 

C
hase

FO
U

RT
H

ED
IT

IO
N

INTERNATIONAL
EDITION

ISBN-13:
ISBN-10:

978-0-273-79332-8
0-273-79332-2

9 7 8 0 2 7 3 7 9 3 3 2 8

9 0 0 0 0

The editorial team at Pearson has worked closely with 
educators around the globe to inform students of the 
ever-changing world in a broad variety of disciplines. 
Pearson Education offers this product to the international 
market, which may or may not include alterations from the 
United States version.

INTERNATIONAL
EDITIONIN

T
ER

N
AT

IO
N

A
L

ED
IT

IO
N

Java Software Structures
Designing and Using Data Structures
FOURTH EDITION

 John Lewis • Joseph Chase



D E S I G N I N G  A N D  U S I N G
D ATA  S T R U C T U R E S

4 T H  E D I T I O N

A01_LEWI3322_FM_p1-26.indd   1 21/02/13   3:45 PM



A01_LEWI3322_FM_p1-26.indd   2 21/02/13   3:45 PM

         This page is intentionally left blank.



Boston Columbus Indianapolis New York San Francisco 
Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan 

Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney 
Hong Kong Seoul Singapore Taipei Tokyo

john L ewis
V i r g i n i a  Te ch

joseph  chase
Rad f o r d  Un i v e r s i t y

D E S I G N I N G  A N D  U S I N G
D ATA  S T R U C T U R E S

4 T H  E D I T I O N

 A N D 

i n t e r na t i o na l  ed i t i o n  c on t r i b u t i o n s  b y 

p i ya L i  s engUpTa

A01_LEWI3322_FM_p1-26.indd   3 01/03/13   2:07 PM



Acquisitions Editor, US Edition: Matt Goldstein
Editorial Assistant: Jenah Blitz-Stoehr
Senior Managing Editor: Scott Disanno
Senior Production Supervisor: Marilyn Lloyd
Marketing Manager: Yes Alayan
Marketing Coordinator: Kathryn Ferranti
Publisher, International Edition: Angshuman Chakraborty
Publishing Administrator and Business Analyst, International 

Edition: Shokhi Shah Khandelwal
Associate Print & Media Editor, International Edition: 

Anuprova Dey Chowdhuri
Acquisitions Editor, International Edition: Sandhya Ghoshal

Publishing Administrator, International Edition: Hema Mehta
Project Editor, International Edition: Karthik Subramanian
Senior Manufacturing Controller, Production, International 

Edition: Trudy Kimber
Marketing Coordinator: Kathryn Ferranti
Manufacturing Buyer: Lisa McDowell
Cover Design: Jodi Notowitz
Project Management and Illustrations: Cenveo® Publisher Services
Project Manager, Cenveo® Publisher Services, Inc.: Rose Kernan
Text Design, Cenveo® Publisher Services, Inc.: Jerilyn 

Bockorick, Alisha Webber
Cover Image: Viachaslau Kraskouski/Shutterstock

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoninternationaleditions.com

© Pearson Education Limited 2014

The rights of John Lewis and Joseph Chase to be identified as authors of this work have been asserted by them in accordance 
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Java Software Structures, 4th edition, ISBN 978-0-13-325012-1, 
by John Lewis and Joseph Chase, published by Pearson Education © 2014.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or 
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of 
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, 
Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in 
the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any 
affiliation with or endorsement of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the 
documents and related graphics published as part of the services for any purpose. All such documents and related graphics 
are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties 
and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, 
implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective 
suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, 
data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the 
use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes 
are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or 
changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within 
the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This 
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 0-273-79332-2
ISBN 13: 978-0-273-79332-8

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10
Typeset in Sabon LT Std Roman by Cenveo® Publisher Services

Printed and bound by Courier Westford in The United States of America
The publisher’s policy is to use paper manufactured from sustainable forests.

A01_LEWI3322_FM_p1-26.indd   4 01/03/13   2:07 PM

ISBN 13: 978-0-273-79368-7
 (Print)
 (PDF)



To my wife Sharon and my kids:

Justin, Kayla, Nathan, and Samantha

–J. L.

To my loving wife Melissa for her support and encouragement  
and to our families, friends, colleagues, and students who have provided  

so much support and inspiration through the years.

–J. C.

A01_LEWI3322_FM_p1-26.indd   5 21/02/13   3:45 PM



A01_LEWI3322_FM_p1-26.indd   6 21/02/13   3:45 PM

         This page is intentionally left blank.



7

This book is designed to serve as a text for a course on data structures and algo-
rithms. This course is typically referred to as the CS2 course because it is often 
taken as the second course in a computing curriculum.

Pedagogically, this book follows the style and approach of the leading CS1 
book Java Software Solutions: Foundations of Program Design, by John Lewis 
and William Loftus. Our book uses many of the highly regarded features of that 
book, such as the Key Concept boxes and complete code examples. Together, 
these two books support a solid and consistent approach to either a two-course or 
three-course introductory sequence for computing students. That said, this book 
does not assume that students have used Java Software Solutions in a previous 
course.

Material that might be presented in either course (such as recursion or sort-
ing) is presented in this book as well. We also include strong reference material 
providing an overview of object-oriented concepts and how they are realized in 
Java.

We understand the crucial role that the data structures and algorithms course 
plays in a curriculum and we think this book serves the needs of that course 
well.

New in the Fourth Edition
We have made some key modifications in this fourth edition to enhance its peda-
gogy. They can be summarized as follows:

n	 Revised the collection chapters to provide a more complete explanation of 
how the Java API supports the collection.

n	 Added a summary of terms and definitions at the end of each chapter.

n	 Separated the coverage of Iterators into it’s own chapter and expanded the 
discussion.

n	 Added a new Code Annotation feature, used to explore key statements 
with graphic annotations.

n	 Added a new Common Error callout feature.

n	 Added new Design Focus callouts.

Preface

A01_LEWI3322_FM_p1-26.indd   7 21/02/13   3:45 PM



8 PrEFacE

n	 Added a new appendices covering graphical drawing, graphical user inter-
face development, and regular expressions.

n	 Reviewed and updated the text throughout to improve discussions and ad-
dress issues.

In particular, we’ve reworked the discussion of individual collections to match 
the following flow:

Explore the collection conceptually.

Discuss the support in the
Java API for the collection.

Explore implementation options
and efficiency issues.

Use the collection to solve problems.

This approach clarifies the distinction between the way the Java API supports a 
particular collection and the way it might be implemented from scratch. It makes 
it easier for instructors to point out limitations of the API implementations in a 
compare-and-contrast fashion. This approach also allows an instructor, on a case-
by-case basis, to simply introduce a collection without exploring implementation 
details if desired.

The other modifications for this edition flesh out the presentation to a higher 
degree than previous editions did. The addition of a term list (with succinct defi-
nitions) at the end of each chapter provides a summary of core issues in ways 
that the other features don’t. New Code Annotation and Common Error features 
highlight specific issues that might otherwise get lost in the body of the text, but 
without interrupting the flow of the topic.

We think these modifications build upon the strong pedagogy established by 
previous editions and give instructors more opportunity and flexibility to cover 
topics as they choose.

Our approach
Books of this type vary greatly in their overall approach. Our approach is founded 
on a few important principles that we fervently embraced. First, we present the 
various collections explored in the book in a consistent manner. Second, we 

A01_LEWI3322_FM_p1-26.indd   8 21/02/13   3:45 PM



 PrEFacE  9

emphasize the importance of sound software design techniques. Third, we orga-
nized the book to support and reinforce the big picture: the study of data struc-
tures and algorithms.

Throughout the book, we keep sound software engineering practices a high 
priority. Our design of collection implementations and the programs that use them 
follow consistent and appropriate standards.

Of primary importance is the separation of a collection’s interface from its 
underlying implementation. The services that a collection provides are always 
formally defined in a Java interface. The interface name is used as the type des-
ignation of the collection whenever appropriate to reinforce the collection as an 
abstraction.

chapter Breakdown
Chapter 1 (Introduction) discusses various aspects of software quality and 

provides an overview of software development issues. It is designed to establish 
the appropriate mindset before embarking on the details of data structure and 
algorithm design.

Chapter 2 (Analysis of Algorithms) lays the foundation for determining the 
efficiency of an algorithm and explains the important criteria that allow a devel-
oper to compare one algorithm to another in proper ways. Our emphasis in this 
chapter is understanding the important concepts more than getting mired in heavy 
math or formality.

Chapter 3 (Introduction to Collections—Stacks) establishes the concept of a 
collection, stressing the need to separate the interface from the implementation. 
It also conceptually introduces a stack, then explores an array-based implementa-
tion of a stack.

Chapter 4 (Linked Structures—Stacks) discusses the use of references to create 
linked data structures. It explores the basic issues regarding the management of 
linked lists, and then defines an alternative implementation of a stack (introduced 
in Chapter 3) using an underlying linked data structure.

Chapter 5 (Queues) explores the concept and implementation of a first-in, first-
out queue. Radix sort is discussed as an example of using queues effectively. The 
implementation options covered include an underlying linked list as well as both 
fixed and circular arrays.

Chapter 6 (Lists) covers three types of lists: ordered, unordered, and indexed. 
These three types of lists are compared and contrasted, with discussion of the 
operations that they share and those that are unique to each type. Inheritance 
is used appropriately in the design of the various types of lists, which are imple-
mented using both array-based and linked representations.

A01_LEWI3322_FM_p1-26.indd   9 21/02/13   3:45 PM



10 PrEFacE

Chapter 7 (Iterators) is a new chapter that isolates the concepts and implemen-
tation of iterators, which are so important to collections. The expanded discussion 
drives home the need to separate the iterator functionality from the details of any 
particular collection.

Chapter 8 (Recursion) is a general introduction to the concept of recursion and 
how recursive solutions can be elegant. It explores the implementation details of 
recursion and discusses the basic idea of analyzing recursive algorithms.

Chapter 9 (Searching and Sorting) discusses the linear and binary search algo-
rithms, as well as the algorithms for several sorts: selection sort, insertion sort, 
bubble sort, quick sort, and merge sort. Programming issues related to searching 
and sorting, such as using the Comparable interface as the basis of comparing 
objects, are stressed in this chapter. Searching and sorting that are based in par-
ticular data structures (such as heap sort) are covered in the appropriate chapter 
later in the book.

Chapter 10 (Trees) provides an overview of trees, establishing key terminology 
and concepts. It discusses various implementation approaches and uses a binary 
tree to represent and evaluate an arithmetic expression.

Chapter 11 (Binary Search Trees) builds off of the basic concepts established 
in Chapter 10 to define a classic binary search tree. A linked implementation of a 
binary search tree is examined, followed by a discussion of how the balance in the 
tree nodes is key to its performance. That leads to exploring AVL and red/black 
implementations of binary search trees.

Chapter 12 (Heaps and Priority Queues) explores the concept, use, and imple-
mentations of heaps and specifically their relationship to priority queues. A heap 
sort is used as an example of its usefulness as well. Both linked and array-based 
implementations are explored.

Chapter 13 (Sets and Maps) explores these two types of collections and their 
importance to the Java Collections API.

Chapter 14 (Multi-way Search Trees)is a natural extension of the discussion of 
the previous chapters. The concepts of 2-3 trees, 2-4 trees, and general B-trees are 
examined and implementation options are discussed.

Chapter 15 (Graphs) explores the concept of undirected and directed graphs 
and establishes important terminology. It examines several common graph algo-
rithms and discusses implementation options, including adjacency matrices.

Appendix A (UML) provides an introduction to the Unified Modeling 
Language as a reference. UML is the de facto standard notation for representing 
object-oriented systems.

Appendix B (Object-Oriented Concepts) is a reference for anyone needing a 
review of fundamental object-oriented concepts and how they are accomplished 

A01_LEWI3322_FM_p1-26.indd   10 21/02/13   3:45 PM



 PrEFacE  11

in Java. Included are the concepts of abstraction, classes, encapsulation, inheri-
tance, and polymorphism, as well as many related Java language constructs such 
as interfaces.

Appendix C (Graphics) covers the basics of drawing shapes using the Java API.

Appendix D (Graphical User Interfaces) provides a detailed overview of the 
elements needed to develop a Swing-based GUI. It includes many examples using 
a variety of interface components.

Appendix E (Hashing) covers the concept of hashing and related issues, such 
as hash functions and collisions. Various Java Collections API options for hashing 
are discussed.

Appendix F (Regular Expressions) provides an introduction to the use of regu-
lar expressions, which come into play in various Java API elements, such as the 
Scanner class.

Supplements
The following student resources are available for this book:

n	 Source code for all programs presented in the book

n	 VideoNotes that explore select topics from the book

Resources can be accessed at www.pearsoninternationaleditions.com/lewis

The following instructor resources can be found at Pearson Education’s 
Instructor Resource Center:

n	 Solutions for select exercises and programming projects in the book

n	 Powerpoint slides for the presentation of the book content

n	 Test bank 

To obtain access, please visit www.pearsoninternationaleditions.com/lewis  
or contact your local Pearson Education sales representative.

Pearson would also like to thank Mohit P. Tahiliani of NITK Surathkal for 
reviewing the content of the International Edition.

A01_LEWI3322_FM_p1-26.indd   11 21/02/13   3:45 PM



A01_LEWI3322_FM_p1-26.indd   12 21/02/13   3:45 PM

         This page is intentionally left blank.



13

Preface  7

credits  25

chapter 1 Introduction 27
1.1 Software Quality 28

 Correctness 29
 Reliability 29
 Robustness 30
 Usability 30
 Maintainability 31
 Reusability 31
 Portability 32
 Efficiency 32
 Quality Issues 32

1.2 Data Structures 33
 A Physical Example 33
 Containers as Objects 36

chapter 2 analysis of algorithms 41
2.1 algorithm Efficiency 42

2.2 Growth Functions and Big-Oh Notation 43

2.3 comparing Growth Functions 45

2.4 Determining Time complexity 48
 Analyzing Loop Execution 48
 Nested Loops 48
 Method Calls 49

Contents

A01_LEWI3322_FM_p1-26.indd   13 21/02/13   3:45 PM



chapter 3 Introduction to collections – Stacks 55
3.1 collections 56

Abstract Data Types 57
The Java Collections API 59

3.2 a Stack collection 59

3.3 crucial OO concepts 61
Inheritance and Polymorphism 62
Generics 63

3.4 Using Stacks: Evaluating Postfix Expressions 64
Javadoc 71

3.5 Exceptions 72

3.6 a Stack aDT 74

3.7 Implementing a Stack: With arrays 77
Managing Capacity 78

3.8 The arrayStack class 79
The Constructors 80
The push Operation 82
The pop Operation 83
The peek Operation 85
Other Operations 85
The EmptyCollectionException Class 85
Other Implementations 86

chapter 4 Linked Structures – Stacks 93
4.1 references as Links  94

4.2 Managing Linked Lists  96
Accessing Elements 96
Inserting Nodes 97
Deleting Nodes 98

4.3 Elements without Links 99
Doubly Linked Lists 99

4.4 Stacks in the Java aPI 100

14 cONTENTS

A01_LEWI3322_FM_p1-26.indd   14 21/02/13   3:45 PM



4.5 Using Stacks: Traversing a Maze 101

4.6 Implementing a Stack: With Links 110
The LinkedStack Class 110
The push Operation 114
The pop Operation 116
Other Operations 117

chapter 5 Queues 123
5.1 a conceptual Queue 124

5.2 Queues in the Java aPI 125

5.3 Using Queues: code Keys 126

5.4 Using Queues: Ticket counter Simulation 130

5.5 a Queue aDT 135

5.6 a Linked Implementation of a Queue 137
The enqueue Operation 139
The dequeue Operation 141
Other Operations 142

5.7 Implementing Queues: With arrays 143
The enqueue Operation 147
The dequeue Operation 149
Other Operations 150

5.8 Double-Ended Queues (Deque) 150

chapter 6 Lists 155
6.1 a List collection 156

6.2 Lists in the Java collections aPI 158

6.3 Using Unordered Lists: Program of Study 159

6.4 Using Indexed Lists: Josephus 170

6.5 a List aDT 172
Adding Elements to a List 173

 cONTENTS  15

A01_LEWI3322_FM_p1-26.indd   15 21/02/13   3:45 PM



6.6 Implementing Lists with arrays 178
The remove Operation 180
The contains Operation 182
The add Operation for an Ordered List 183
Operations Particular to Unordered Lists 185
The addAfter Operation for an Unordered List 185

6.7 Implementing Lists with Links 186
The remove Operation 187

chapter 7 Iterators 195
7.1 What’s an Iterator? 196

Other Iterator Issues 198

7.2 Using Iterators: Program of Study revisited 198
Printing Certain Courses 202
Removing Courses 203

7.3 Implementing Iterators: With arrays 205

7.4 Implementing Iterators: With Links 207

chapter 8 recursion 213
8.1 recursive Thinking 214

Infinite Recursion 214
Recursion in Math 215

8.2 recursive Programming 216
Recursion versus Iteration 219
Direct versus Indirect Recursion 219

8.3 Using recursion 220
Traversing a Maze 220
The Towers of Hanoi 228

8.4 analyzing recursive algorithms 233

chapter 9 Searching and Sorting 241
9.1 Searching 242

Static Methods 243
Generic Methods 243

16 cONTENTS

A01_LEWI3322_FM_p1-26.indd   16 21/02/13   3:45 PM



Linear Search 244
Binary Search 246
Comparing Search Algorithms 248

9.2 Sorting 249
Selection Sort 252
Insertion Sort 254
Bubble Sort 256
Quick Sort 258
Merge Sort 262

9.3 radix Sort 265

chapter 10 Trees 275
10.1 Trees 276

Tree Classifications 277

10.2 Strategies for Implementing Trees 279
Computational Strategy for Array  

Implementation of Trees 279
Simulated Link Strategy for Array  

Implementation of Trees 279
Analysis of Trees 281

10.3 Tree Traversals 282
Preorder Traversal 282
Inorder Traversal 283
Postorder Traversal 283
Level-Order Traversal 284

10.4 a Binary Tree aDT 285

10.5 Using Binary Trees: Expression Trees 289

10.6 a Back Pain analyzer 301

10.7 Implementing Binary Trees with Links 305
The find Method 310
The iteratorInOrder Method 312

chapter 11 Binary Search Trees 319
 11.1 a Binary Search Tree 320

 cONTENTS  17

A01_LEWI3322_FM_p1-26.indd   17 21/02/13   3:45 PM



11.2 Implementing Binary Search Trees: With Links 322
The addElement Operation 323
The removeElement Operation 326
The removeAllOccurrences Operation 329
The removeMin Operation 330
Implementing Binary Search Trees: With Arrays 332

11.3 Using Binary Search Trees: Implementing  
Ordered Lists 332
Analysis of the BinarySearchTreeList 

Implementation 335

11.4 Balanced Binary Search Trees 336
Right Rotation 337
Left Rotation 338
Rightleft Rotation 339
Leftright Rotation 339

11.5 Implementing BSTs: aVL Trees 340
Right Rotation in an AVL Tree 341
Left Rotation in an AVL Tree 341
Rightleft Rotation in an AVL Tree 341
Leftright Rotation in an AVL Tree 343

11.6 Implementing BSTs: red/Black Trees 343
Insertion into a Red/Black Tree 344
Element Removal from a Red/Black Tree 347

chapter 12 Heaps and Priority Queues 357
12.1 a Heap 358

The addElement Operation 360
The removeMin Operation 361
The findMin Operation 362

12.2 Using Heaps: Priority Queues 362

12.3 Implementing Heaps: With Links 366
The addElement Operation 368
The removeMin Operation 370
The findMin Operation 373

18 cONTENTS

A01_LEWI3322_FM_p1-26.indd   18 21/02/13   3:45 PM



12.4 Implementing Heaps: With arrays 373
The addElement Operation 375
The removeMin Operation 376
The findMin Operation 378

 12.5 Using Heaps: Heap Sort 378

chapter 13 Sets and Maps 385
13.1 Set and Map collections 386

13.2 Sets and Maps in the Java aPI 386

13.3 Using Sets: Domain Blocker 389

13.4 Using Maps: Product Sales 392

13.5 Using Maps: User Management 396

13.6 Implementing Sets and Maps Using Trees 401

13.7 Implementing Sets and Maps Using Hashing 401

chapter 14 Multi-Way Search Trees 409
14.1 combining Tree concepts 410

14.2 2-3 Trees 410
Inserting Elements into a 2-3 Tree 411
Removing Elements from a 2-3 Tree 413

14.3 2-4 Trees 416

14.4 B-Trees 418
B*-Trees 419
B+-Trees 419
Analysis of B-Trees 420

14.5 Implementation Strategies for B-Trees 420

chapter 15 Graphs 427
15.1 Undirected Graphs 428

15.2 Directed Graphs 429

 cONTENTS  19

A01_LEWI3322_FM_p1-26.indd   19 21/02/13   3:45 PM



15.3 Networks 431

15.4 common Graph algorithms 432
Traversals 432
Testing for Connectivity 436
Minimum Spanning Trees 438
Determining the Shortest Path 441

15.5 Strategies for Implementing Graphs 441
Adjacency Lists 442
Adjacency Matrices 442

15.6 Implementing Undirected Graphs with  
an adjacency Matrix 443
The addEdge Method 448
The addVertex Method 448
The expandCapacity Method 449
Other Methods 450

appendix a UML 455
The Unified Modeling Language (UML) 456

UML class Diagrams 456

UML relationships 458

appendix B Object-Oriented Design 463
B.1 Overview of Object-Orientation 464

B.2 Using Objects 464
Abstraction 465
Creating Objects 466

B.3 class Libraries and Packages 468
The import Declaration 468

B.4 State and Behavior 469

B.5 classes 470
Instance Data 473

20 cONTENTS

A01_LEWI3322_FM_p1-26.indd   20 21/02/13   3:45 PM




